Please wait a minute...
兴发pt登录学报,2018,35(9):115-118https://doi.org/10.16039/j.cnki.cn22-1249.2018.09.026
本期目录|过刊浏览|高级检索 |
对二元函数可微定义的若干注释
王素娟
闽南理工学院 信息管理学院
Notes on The Definition of Differentiable of Binary Function
WANG Su-juan
下载:PDF(291KB)
输出:BibTeX|EndNote(RIS)
摘要

为了能更直观、更全面地理解二元函数可微的定义,利用几何的方法,对二元函数可微的定义进行了详细的诠释,给出了二元函数全微分的几何意义,揭示出二元函数全微分与一元函数微分之间的关系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王素娟
关键词:可微全增量全微分曲面切平面
Abstract:

In order to understand the definition of differentiable of binary function more intuitively and comprehensively, by means of geometric method, the definition of differentiable of binary function is explained in detail , and the geometric meaning of total differential of binary function is given. The relationship between the total differential of binary function and the differential of unary function is revealed.

Key words:differentiabletotal incrementtotal differentialsurfacetangent plane
出版日期:2018-09-25发布日期:2018-09-25整期出版日期:2018-09-25
ZTFLH: O172.1
引用本文:
王素娟. 对二元函数可微定义的若干注释 [J]. 兴发pt登录学报, 2018, 35(9): 115-118.
WANG Su-juan. Notes on The Definition of Differentiable of Binary Function . Journal of Jilin Institute of Chemical Technology, 2018, 35(9): 115-118.
链接本文:
http://xuebao.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1249.2018.09.026http://xuebao.jlict.edu.cn/CN/Y2018/V35/I9/115
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

Shared
Discussed